
PROJECT · ESCALATIONS – EXPERT SUPPORT CALCULATOR

ESCALATIONS – EXPERT SUPPORT CALCULATOR
THOMAS EAPEN

2018

Contents

1 REPORTING &ANALYTICS 2
1.1 ESCALATION – EXPERT SUPPORT CALCULATOR . 2
1.2 CORE ALGORITHM . 3
1.3 CORE ALGORITHM – V3 . 3

List of Figures

Page 1 of 4

PROJECT · ESCALATIONS – EXPERT SUPPORT CALCULATOR

1 REPORTING &ANALYTICS
1.1 ESCALATION – EXPERT SUPPORT CALCULATOR

To generate a count of all transfers that were done by an Agent, I had to sort all the
records for each Interaction ID by time-stamp. Generating a list of Agents for that In-
teraction ID and observing the order of the interested Agent in the list indicates the
position of the Agent in the interaction and indicates if this was the Agent that ini-

tiated the transfer or not. With this information along with the fact that we know if
the Escalations/Expert Support Queue was involved in the interaction, we can deter-
mine if the interested Agentwas in fact the Agent thatmade the call to the respective
queues.

Page 2 of 4

PROJECT · ESCALATIONS – EXPERT SUPPORT CALCULATOR

1.2 CORE ALGORITHM

for index, agent_row in df_summary_subset.iterrows():
#set_trace()
df_agent = df_cleaned.loc[df_cleaned['AGENT_USERNAME'] == agent_row['Agent']]
df_agent = df_agent.drop_duplicates(subset='INTERACTION_ID')
esc_count = expert_count = trf_count = 0
for _, row in df_agent.iterrows():

trf_happened = False
df_iid_trf = df_cleaned[df_cleaned['INTERACTION_ID'] == row['INTERACTION_ID']].sort_values(by='IRF_START_DATE_TIME')
df_iid_trf = df_iid_trf.dropna(subset=['USER_EMAIL'])
agent_list = df_iid_trf.USER_EMAIL.unique()
if len(agent_list) > 1:

#set_trace()
if agent_list[-1] != agent_row['Agent']+"@tangerine.ca" and agent_list[-2] == agent_row['Agent']+"@tangerine.ca":

trf_happened= True
trf_count += 1

#set_trace()
df_iid_esc = df_cleaned.loc[(df_cleaned['INTERACTION_ID'] == row['INTERACTION_ID']) & (df_cleaned['QUEUE_QUEUE'].isin(esc_list))]
if not df_iid_esc.empty:

if trf_happened == True:
set_trace()
esc_count += 1

df_iid_expert = df_cleaned.loc[(df_cleaned['INTERACTION_ID'] == row['INTERACTION_ID']) & (df_cleaned['QUEUE_QUEUE'].isin(expert_list))]
if not df_iid_expert.empty:

if trf_happened == True:
expert_count += 1

#set_trace()
#df_summary.at[index, 'Escalation Count'] = esc_count
#df_summary.at[index, 'Expert Count'] = expert_count
df_summary_subset.at[index, 'Escalation Count'] = esc_count
df_summary_subset.at[index, 'Expert Count'] = expert_count
df_summary_subset.at[index, 'Transfer Count'] = trf_count

Listing 1: Code Listing→ Transfer Call Count

1.3 CORE ALGORITHM – V3

Page 3 of 4

PROJECT · ESCALATIONS – EXPERT SUPPORT CALCULATOR

In the updated design, we generate a list of participants by only removing consecutive
duplicate Agents rather than all duplicate Agents. This removal of only consecutive
duplicates makes sure that the call flow is maintained with the right order which can
be inspected to account for cases where multiple transfers by the Agent to different

CSLs or multiple transfers to the same CSL are accounted for. Once the list of CSL
Agents are obtained from the call flow, we look at array indices comparisons to view
if the call flowed from the interested Agent to the CSL.

for index, agent_row in df_summary_subset.iterrows():
df_agent = df_cleaned.loc[df_cleaned['AGENT_USERNAME'] == agent_row['Agent']]
df_agent = df_agent.drop_duplicates(subset='INTERACTION_ID')
interested_email = agent_row['Agent']+'@tangerine.ca'
esc_count = expert_count = trf_count = 0
for _, row in df_agent.iterrows():

df_iid_trf = df_cleaned[df_cleaned['INTERACTION_ID'] == row['INTERACTION_ID']].sort_values(by='IRF_START_DATE_TIME')
df_iid_trf = df_iid_trf.dropna(subset=['USER_EMAIL'])
agent_list = df_iid_trf.USER_EMAIL
agent_list = agent_list.tolist()
agent_list = [x[0] for x in groupby(agent_list)]
if len(agent_list) > 1:

agent_list_trf = list(OrderedDict.fromkeys(agent_list))
if agent_list_trf[-1] != interested_email:

trf_count += 1
df_iid_esc = df_cleaned.loc[(df_cleaned['INTERACTION_ID'] == row['INTERACTION_ID']) & (df_cleaned['QUEUE_QUEUE'].isin(esc_list))]
if not df_iid_esc.empty:

df_iid_esc = df_iid_esc.dropna(subset=['USER_EMAIL'])
esc_names = df_iid_esc['USER_EMAIL'].tolist()
esc_names = list(OrderedDict.fromkeys(esc_names))
for name in esc_names:

indices = [i for i, x in enumerate(agent_list) if x == name]
for i in indices:

if agent_list[i - 1] == interested_email:
iid_list.append(df_iid_esc['INTERACTION_ID'].iloc[0])
esc_count += 1
break

#set_trace()
df_summary.at[index, 'Escalation Count'] = esc_count

Listing 2: Code Listing→Core Algorithm – v3

Page 4 of 4

	Reporting & Analytics
	Escalation – Expert Support Calculator
	Core Algorithm
	Core Algorithm – v3

